I don’t come to laud the urinary anion gap, I come to bury it

While preparing for the electrolyte session for Epic Pathshala I added a new twist. For the first time I added the concept that Jaime Uribarri has been shouting for the last few years regarding the use of urinary anion gap. I first saw Dr. Uribarri at NKF Clinical at Boston in 2022. He gave a great lunch-time presentation on the utility (more specifically, the lack of urility) of urine anion gap. Perfect counter programming to Richard Sterns’ lecture on managing electrolyte disorders with the assistance of the BUMP (basic urine metabolic panel) (NDT).

Dr. Uribarri’s thoughts were crystalized in two recent articles:

  1. The Urine Anion Gap: Common Misconceptions
  2. Beyond the Urine Anion Gap: In Support of the Direct Measurement of Urinary Ammonium

The tweetorial can be found here:

Part One

Part Two

Here is my rough script that I use to write the tweets

This is going to be a long arc and it has a point but it is going to take a bit to get there.  #Tweetorial #MedThread #Electrolytes #AcidBase 1/11

Let’s start with acid base balance. Metabolizing proteins, specifically the sulfur containing amino acids, methionine and cysteine, generates hydrogen sulfide (H2S). This acid cannot be cleared by the lungs. #OnlyTheKidneys can clear this acid. 2/11

This acid load, generated by normal metabolism that must be excreted by the kidneys is the daily acid load. When patients with advanced CKD develop progressive metabolic acidosis it is because they are failing to clear the daily acid load. 3/11

On a “western diet” (I.e. carnivorous diet) it is about 50-100 mEq of acid (H+ ions) a day. 4/11

Boy it would be easy if we could excrete this as free hydrogen ions, alas that would require a urine pH of around 1 (50 mEq H+ in 2 liters of urine). At a minimal urine pH of 4.5, we would need to make 1200 liters of urine a day to clear the daily acid load. 5/11

So the kidney has to smuggle the hydrogen out as something other than free hydrogen. There are two solutions to this:

  1. Titratable Acid
  2. Ammonium 6/11

Titratable acid is just H2PO4–. Most of the daily acid load is excreted this way. The problem is that it is fixed by phosphate intake. We cannot manufacture new phosphate open the spot when we encounter a large acid load, so we cannot ramp up phosphate excretion to deal with an acid load.** 7/11

**Actually that is not entirely true. In addition to the serum bicarbonate, the bones are called upon to buffer an acid load. And as they are dissolved buffering acid (not an ideal state) they release phosphate which clears the acid from the body. 8/11

So when faced with a large acid load we call on system two: ammonium. The physiologists have two models for how this works. In one the production of NH4 from glycine produces two bicarbonate, the other urinary NH3 accepts a hydrogen ion to form NH4. 9/11

We’ll let the physiologists argue over these two models, for our purpose the only thing you need to know is that a healthy renal response to acidosis is an increase in urinary ammonium to excrete the excess daily acid load. 10/11

The problem comes from the fact that when you order a urine ammonium the labs tells you to pound sand. They won’t do it.They can use the same instrument they use to measure serum ammonia (though they would need to dilute the urine sample 40:1). Because the lab wouldn’t measure urine anion gap lead to 40 year distraction called the urinary anion gap… 11/11

Okay, on to part two. 

Let’s review, the kidneys excrete 50-100 mEq of H+ ions every day as what we call, “The daily acid load”

Most of the daily acid load is excreted as H2PO4–, AKA Titratable acid

An insignificant < 1% is excreted as free hydrogen and that can be detected as urine pH.

And most importantly, for our purposes, in the face of an acid load, that excess acid is excreted as NH4+ 1/

Clinical labs generally refuse to measure urinary ammonium so doctors have been forced to scramble to find ways to “estimate” urinary ammonium. 2/

In 1986 electrolyte legend, Mitch Halperin published this paper which discovered an amazingly tight correlation between urinary anion gap and urinary ammonium.  3/

This makes sense. The typically measured urine electrolytes are sodium, potassium, and chloride. If there are a lot of positively charged ammoniums in the urine, the urine chloride better increase to balance those cations out. Can’t have people peeing sparks. 4/

Discoveries are made in JCI, but standard of care changes with NEJM. And sure enough, 2 years later, NEJM published this “proof” of the urinary anion gap. What an amazing time that the NEJM would publish 60 person physiology studies 😍 5/

So for forty years this schema ruled the nephrology wards.

Patients with non-anion gap metabolic acidosis would have urine electrolytes checked in order to see if their kidneys were responding appropriately. 

A negative urine anion gap indicated a rich supply of urinary ammonium indicating a healthy renal response and would direct physicians to look to the gut for the cause of metabolic acidosis.

A positive urinary anion gap indicated a kidney that was unable to excrete excess ammonium and suggests a diagnosis of distal or hyperkalemic (type 1 or 4) RTA. 

But a few years ago Dr. Uribe began making noises that this whole urinary anion gap went against fundamental laws of nature. Na,Ley that urinary na, k, and cl are not there to merely balance charges but that their urinary excretion is dependent on dietary intake.

Uribe pointed out that patients would have volume depletion(due to extra-renal sodium losses) and as a result would lower urine Na, resulting in the negative gap. Similarly in the healthy controls ion Batille’s study, they had been loaded with oral NH3Cl. The excess chloride he argues would make the urinary anion gap negative. 

He then points to studies of DKA, respiratory acidosis, and systemic acidification that all result in increases in urine ammonium but do not make the urine anion gap more negative.

And here is the Keynote presentation I used to generate the images

Keynote

PowerPoint

Curbsiders #104: Renal Tubular Acidosis

This is the back half of my Acid-Base talk, a detailed dive into non-anion gap metabolic acidosis with an examination of renal tubular acidosis. This one turned out pretty good.

Here is a link to the Curbsiders page for this episode.

This is the sequel to #88 Acid base, boy bands, and grandfather clocks with Joel Topf MD

Before that I did episode #67 and #69 on chronic kidney disease

Before that was #48 Hyponatremia Deconstructed

And I started my Curbsiders career with #31 Diuretics, leg cramps and resistant hypertension.

So non-anion gap metabolic acidosis is my fifth or sixth appearance on the Curbsiders. Thanks guys.

Non-anion gap Metabolic Acidosis

Non-anion gap metabolic acidosis (PowerpointPDF)
  • Case-based
  • 70 slides, 1 hour
  • Revised May 2013
  • Now optimized for App.GoSoapBox
  • Now available as a screencast.
  • In your chloride intoxication group of causes, add TPN
  • In your GI loss of HCO3, “change HCO3 to HCO3 precursors” since what we lose in diarrhea is not HCO3 per se since pH of the stool is not acidic, we lose citrate, etc which transform into HCO3 eventually
  • Interesting comment on renal bicarb loss: I would add an extra group and call it decrease renal NH4+ excretion and add distal RTA, renal insufficiency and hypoaldosteronism. You don’t lose HCO3 in distal RTA or hypoaldosteronism. You could argue that NH4+ synthesis in proximal tubule generates “new HCO3” but the student will get lost in that concept
  • In the renal HCO3 loss group I would add post-treatment of DKA, and post-hypocapnia
  • Toluene can cause both anion gap and non anion gap metabolic acidosis but the non anion gap is more common because the unmeasured anions are rapidly excreted by the kidneys
  • Pentamidine also blocks ENaC and can cause hyperkalemia

Resident lecture on NAGMA

One hour lecture on NAGMA. Just some small changes edits from the last time I gave it. It is one of the few lectures that is still in PowerPoint. It is due for a complete overhaul. It also needs a slide on the treatment of RTA that covers the amount of bicarbonate in a 650 mg tablet (8 mmol) and the fact that distal (type 1) RTA requires a limited amount of bicarbonate (at most 1 mmol/kg). This is appropriate for residents and medical students.

If you are interested in ward teaching and RTA, take a look at this post by Robert Centor.

Also this is a nice article on the issue of saline having a pH of 5.5, covering both the reason (its the PVC bag) and the implications (none).

NAGMA (PPT)

Altitude sickness and the role of acetazolamide

I am going to Kings Canyon National Park at the end of the month. I will leave Detroit, elevation 600 feet and will travel via planes, trains and automobiles to 9,000 feet for the first night. Then we will begin out hike and cross passes over 12,500 feet.

In the past, I have developed modest altitude sickness going from 600 to 8,000 feet. So, I am nervous about the same problem on this trip. Acetazolamide is supposed to ameliorate altitude sickness.

The body acclimates to decreased oxygen and is so effective that people can function at the top of Mt. Everest without supplemental oxygen. The partial pressure of oxygen at the summit is 43 mmHg which is equivalent to breathing 6% FiO2.

From NEJM 2009, 360: 140-9

The primary means of improving oxygenation is hyperventilation. Hypoxia stimulates ventilation. There is also an increased ventilatory response to carbon dioxide so that that the normal respiratory response to carbon dioxide is exaggerated so that one gets more ventilation at lower CO2 levels. The reason that increased ventilation improves oxygenation has to do with the effect carbon dioxide in the blood has on oxygen transfer in the alveoli. During respiration CO2 leaving the blood dilutes the incoming oxygen at the alveoli, increased respiration, lowers the pCO2 and hence minimizes this dilution.

Antagonizing the hyperventilatory response is respiratory alkalosis. Central chemoreceptors detect alkalosis in the CSF and slow respiration. This is one of the key factors preventing the essential hyperventilation.

Acetazolamide (Diamox) is a carbonic anhydrase inhibitor. Carbonic anhydrase catalyzes the reaction converting bicarbonate to carbon diaoxide and water:

This is the fundamental buffer reaction in the body and it is amazing to me that blocking this essential acid-base reaction is not lethal. Acetazolamide works in the proximal tubule by blocking the reabsorption of filtered bicarbonate.

Acetazolamide induces a proximal renal tubular acidosis (RTA 2). This results in metabolic acidosis. The metabolic acidosis stimulates compensatory hyperventilation. This metabolic acidosis antagonizes the respiratory alkalosis which normally occurs with hyperventilation.

Their maybe additional advantages of acetazolamide including decreased CSF production and antagonizing fluid retention.

Happy climbing.

Hypokalemia and rhabdomyolysis

Hypokalemia can induce rhabdomyolysis. The purported mechanism is that hypokalemia antagonizes one of the natural causes of exercise induced vasodilation. Normally, during exercise muscles release intracellular potassium causing local pockets of hyperkalemia which triggers vasodilation and increases perfusion to the active myocytes. Total body potassium depletion and hypokalemia decrease local hyperkalemia preventing the vasodilation which results in tissue hypoxia and rhabdomyolysis.

 In The Fluid and Electrolyte Companion we illustrated it thusly:

I remember thinking how funny it was that we used bowling to represent exercise (though we did slide in those runners behind the bowler).  Oh clipart, how much nerdtainment you have given me.

This past week-end one of my patients experienced this. He is a high school student who loves to fish. He has congenital type 2 RTA, so is predisposed to hypokalemia. The exercise that triggered his rhabdo:  fishing. He presented to the ER following a day of fishing with complaints of muscle cramps and weakness. His potassium was reported as less than 2, with CPKs in the 800 range.

One of the unexpected consequences of the rhabdomyolysis was that his cramping continued after the potassium was corrected. In fact, it was actually much worse muscle spasm and tetany of the hands. Turns out, this second round of neuromuscular symptoms weren’t due to hypokalemia but rather rhabdomyolysis induced hypocalcemia. He had a normal total calcium and a low ionized calcium. The muscular symptoms responded to a gram of IV calcium gluconate.

Fluid and Electrolyte lecture at Providence from Tuesday Dec 16

I did a lecture at Providence last week.

I was scheduled to just give a electrolyte lecture without any further guidance. I pulled out two interesting cases I had seen in the last few weeks. Both patients have a non-anion gap metabolic acidosis, but one is hypokalemic and the other is hyperkalemic.

Here is the native Powerpoint files for you to use or edit.

Here is the SlideShare for online viewing

Great cases on call

I’m running the on-call gauntlet.

I was on call Sat and Sun December 6,7

Sat December 13

Sat and Sun December 20,21

Thursday through Sunday December 25-28

four straight week-ends, with Christmas thrown in for the Jew. Ughh.

That said this week-end has had a few great cases:
  • IgM Cold-agglutinin hemolytic anemia in need of plasmapheresis.
  • Fluconazole induced hyperkalemia
  • Urinary obstruction induced electrogenic type 1 RTA (Hyperkalemic variety of type 1 RTA)
  • Primary hyperaldosteronism induced hypertensive emergency
I’ll elaborate on some (all) of these cases in the next few days.

Happy holidays