Kayexalate: risks and benefits

When I was a fellow I got an opportunity to write the chapter in Intensive Care in Nephrology on Disorders of Potassium Homeostasis.

Dr. Murray, the editor and my fellowship program director, told me that I couldn’t use review articles or text books as references. It was a golden experience. I systematically went through all of the pearls I had collected on potassium and drilled down to the original data.

The primary conclusion I had after months of exploring the stacks of The Crerar was that the wall of knowledge that I had assumed backed up all of our clinical practices was more like a chain link fence with isolated points of solidity but mostly holes. Science could provide a rough outline but too much of medicine is based on conjecture and reasoned guesses.

One of my finds was the near total lack of data showing cation-exchange resins to be effective. In the chapter I wrote:

…Two recent studies have questioned the effectiveness of SPS [sodium polysterene] resins, but until larger studies corroborate these findings, SPS resins remain part of the therapy for acute hyperkalemia. (106, 122, PDF) SPS and sorbitol usage have rarely been associated with intestinal necrosis; whether this is due to sorbital, the resin, or other factors is unclear. (123, 124, 125)

The key table from the Gruy-Kappal article showing the lack of effectiveness of SPS resins

This was actually the revised paragraph. The first draft was much stronger. I railed against the use of kayexylate given the lack demonstrated benefit and the emerging data on the dangers of this medication. I was ready to throw kayexalate on the hyperkalemic trash heep along with bicarbonate. My co-author, John Asplin calmed me down and had me moderated the section. He explained that despite the lack of data, SPS resins have a long history of use and explained that though I have the option of using dialysis, intensivists often find themselves in binds where dialysis is not available and they need an extra-renal method for potassium clearance.

I can appreciate Asplin’s wisdom now. In the last decade I have used SPS resins innumerable times in patients with and without ESRD, though my data is circumstantial I am believer in the effectiveness of this drug. I hope the latest publicity about the purported ineffectiveness of Kayexalate leads to well done large studies rather than a loss of this effective medicine.

From vaccine pioneer to research subject

I am the Principle Investigator for a drug company sponsored trial. One of the things I do prior to randomizing patients is spend some time talking with each subject. Today, we enrolled a patient who told me how he helped produce the firs polio vaccine. His first job was at Park-Davis and when they began to mass produce the Salk live-Polio Vaccine he was transferred to that facility. Its cool that this man had, as a young man been part of drug production and now, near the end of his life he is again integral to drug research and development.

A few years ago I read Patenting the Sun by Jane S. Smith. It is an account of the scientific, political and beaurocratic dramas associated with this breakthrough. One of the most interesting aspects of the book was seeing how the egos of the scientific establishment worked against Salk at every turn.

The title of the book comes from an interview of Jonas Salk in which he was asked if he was going to patent the vaccine. He looked at the questioner with surprise and told him, “That would be like patenting the sun.”

What a great attitude and one that is so different than our world where doctors patent bicarbonate to prevent contrast nephropathy. Shameful.

What are the top nephrology stories of the last decade?

As we come to the end of the naughts, we naturally reflect back and think about how far we have come from in the last ten years. Here is my quick list:

  1. MYH9 gene for ESRD
  2. The failure of the normalization of hemoglobin and the wholesale reevaluation of ESAs
  3. The rise of aldosterone and its importance in hypertension and renal disease
  4. the failure of dialysis dose to improve out come in both chronic (HEMO) and acute dialysis (ATN).
  5. FGF-23, hey a whole new hormone and a major advancement in renal physiology
  6. Re-emergence of home dialysis
  7. Problems with the definition of CKD and the problems with eGFR
  8. discovering the antigen in idiopathic membranous nephropathy
I want to do a longer article about this but I’m sure I’m missing some stuff. I don’t have a transplant subject, seems like vitamin D belongs up there, what about the phos binder wars? Bundling? What about MMF in lupus nephritis and every other GN?

Most insulting/funny sentence ever from a consulting doc

I have a new patient that I inherited from a former colleague. She came to me with a letter from her ophthalmologist addressed to the patient that she was suppposed to give to her primary care doctor and nephrologist.

Here is the money quote:

I am going to give you a copy of Harrison’s textbook to look for secondary causes of hypertension.

When the patient came in she didn’t have the book so I have no idea how to re-run her work-up of secondary hypertension (which had been done multiple times in the past).

Hey asshole, next time you have a bad outcome on one of your patients I’ll make sure I send you a copy of Clinical Ophthalmology: A Systematic Approach. What a dick.

Adrian Izhack Katz August 3rd, 1932 to August 17th, 2009


Dr. Katz was my mentor in the nephrology clinic my first year of fellowship. It was his last year of clinical work at the University of Chicago. He was also the supervising attending during some of my dialysis rotations. That rotation was liking being a traffic cop for inpatient dialysis. It is also where I got my twitter handle, @Kidney_boy. It was my beeper salutation.
He was a master of clinical medicine but we came at it from opposite directions. He was finishing and I was starting. He wanted to impart fatherly, philosophic reflections. I was hungry for raw data. I was racing to fill my head with facts. I wish I had an opportunity to spend time with him after I had matured.
Some memorable moments with Adrian:
  • We had just finished clinic in the DCAM and were walking back to the nephrology section. We often would go to his office to discuss something but this time he invited me into a lab. He turned on a Bunsen burner and made two shots of Turkish Coffee. Spending those moments drinking fresh coffee in the lab was the single coolest teacher-student moment of my life.
  • My wife and I had twins while we were in Hyde Park. Only two professors came over for the Bris on my birthday, Adrian Katz and Pat Murray.
  • Adrian and Miriam invited my wife and I over to his house for Passover. We brought our 6 month old twins. I remember being terrified of what they would break. The Katz’s were wonderful hosts and it was like going to the Wizard of Oz for dinner.
  • I remember his office. It was a beautiful large office with great built in bookcases lining one wall. The cases were full and every second or third book had a small yellow sticker. For months I had been meeting him in there. I had noticed the dots but assumed it was just a personal filing system. One day he asked me if I knew what those dots meant. I shrugged. He explained that a dot represented a book or chapter he had written. It was a mind boggling accomplishment, you were literally faced with a wall of academic achievment. I have written textbook chapters. For me it is about as easy as coughing up a lung. Amazing.
  • We were talking about intradialytic hypotension. How could we dialyze this patient without resorting to CVVH and a transfer to the ICU. I mentioned cold dialysate and he said that it is effective but patients don’t like it. My eyes widened like saucers and I said:

“I didn’t know that patients could feel the cooler temperature.”
Adrian replied, “You could fill an ark with what you don’t know.” And then started laughing uproariously. When he finally regained composure, he had tears in his eyes. He explained that he had once had a mentor who had used that same joke on one of Adrian’s peers. It was such a happy memory for him that he couldn’t contain it.

University of Chicago has a nice obituary.

He was a respected teacher.
The world is a shade paler without him.
Found a photo deep in the hard drive from that Seder:

Update from 2014, found another great photo

William Schwartz, the co-discoverer of SIADH has died

William Schwartz has died.

Every Monday at noon during fellowship we had the fluid and electrolyte conference with Dr. Fred Coe. Dr. Coe has extra-sensory powers for electrolytes. When you presented, you would give just the electrolytes and he would re-create the entire case from the metabolic panel. During the lecture he would ask you to explain a certain pathophysiology and then excoriate you if your thoughts were lazy and poorly organized.

If you ever blamed a poorly characterized hyponatremia on SIADH, Dr. Coe would look at you and ask “If Bartter and Schwartz were here, at this table, right now, and were looking at the same data that you have provided, would they agree that this is SIADH? Would they?”

JASN re-printed the original 1957 article describing SIADH in 2001.

Goodbye Dr. Schwartz, yours are the shoulders we stand-on in the daily grind of clinical nephrology.

GOLDMARK: the real story.

I co-wrote a fluid and electrolyte book while in residency. During the final push to finish the book we enlisted some friends to help with proof reading and editing in a week-long proof-reading orgy. Joel Smith, a wayward cellular molecular biologist who ended up a lawyer asked, “Is there something special about the mnemonic for anion-gap metabolic acidosis, MUDSLEEPS? Is the word important? Or just the letters?”

I explained that it was a standard mnemonic along with its cousin MULEPILES. He said that’s stupid and that we should make-up our own mnemonic. Five minutes later he came up with PLUMSEEDS, an exact anagram of mudsleeps, and we used that in the book. I thought it would be a marker of who used our book to learn acid-base, if they used plumseeds they were our’s otherwise, not so much.

9 years have passed and I have yet to hear anyone use PLUMSEEDS.

FAIL

This past September, my partner Susan Steigerwalt, put a letter on my desk she photocopied (she’s old school) from Lancet. The letter described a new mnemonic for the differential of anion-gap metabolic acidosis: GOLDMARK. This reworked mnemonic had more going for it than an ego test, it was a complete reworking of the old and busted mnemonic for new hotness.

I blogged about GOLDMARK a few months ago and received an e-mail from the lead author. I have since e-mailed all three authors. Here’s their story.

In May of 2008, Josh Emmett a second-year medical student at University of Texas Southwestern was having dinner with his dad Dr. Michael Emmett, Chief of Nephrology at Baylor University in Dallas. Dr. Emmett was telling Josh that he and a fellow were frustrated with MUDSLEEPS/MULEPILES/KUSMALE because of its obvious shortcomings: paraldehyde? No one uses that. DKA, Starvation and Ethanol, all of those cause ketoacidosis. Isoniazid/iron as causes of lactic acidosis? The next time I see that will be the first time I see that. Plus no D-lactic acid, no oxoproline, an issue that must have particularly rankled Dr. Emmett as he was an author on the definitive article on the subject.

Josh, looking for a distraction from his studies volunteered to help craft a new mnemonic. Dr. Emmett and a third-year IM resident, Ankit Mehta (who has subsequentky become a nephrology fellow with Dr. Emmett), came up with the letters they would use and the synonyms for different diseases:

Uremia could be U, R or K (Renal, Kidney)
Ethylene glycol could be A, E or G (Antifreeze, Glycol)
Oxoproline could be O or P (Pyroglutamic acid)
Aspirin could A or S (Salicylate)
Ketoacidosis could be K or D (Diabetes, though that is not nearly as good as ketoacidosis because there are other causes of ketosis besides DKA)

With that list in hand Josh hit the internets and plugged the letters into some mnemonic generating websites and came up with:

  • ELK DUMP
  • SUDOKKU
  • PULSE something
  • MOPED

After a few days of vetting the possibilities they settled on GOLDMARK.

GOLDMARK has become my standard AGMA mnemonic. Bye bye PLUMSEEDS.

  • Glycol: ethylene glycol
  • Oxoproline: Pyroglutamic acid
  • L-lactic acid
  • D-lactic acid
  • Methanol
  • Aspirin
  • Renal failure
  • Ketoacidosis
UPDATE: Dr. Ankit Mehta sent me some notes from when they were trying to find mnemonic:

Hi Dr.Topf,
I was cleaning my desk over the weekend and found some papers on which i was scratching some other mnemonics for agma:

  • MOLDS REEK
  • DUKES MOLE
  • LU SMOKED
  • DUSK MOLE
  • SMOK(ing) ALE
  • LAME SUDOK(u).

As you see none of them are as good as GOLD MARK. Also, some are a stretch of imagination!
hope this helps,
Ankit.

I weep that I won’t ever get to pimp medical students on the meaning of SMOKing ALE

Dialysis report card

One of my 81 year old patients just recently started on dialysis. I took care of her CKD for about 3 years before she needed to start dialysis. Today, we had a care meeting and she told me that she was doing great on dialysis and her labs verified this.

Her pastor reads all the good report cards that the kids in her church bring to him. So she brought in her dialysis report card and her pastor read it on Sunday.

Dose of DIalysis

Everything I learned in fellowship has turned out wrong. When I was a fellow I was taught:

  • Higher Kt/V were beneficial for patients
  • Increasing the hemoglobin reduced LVH and improved outcomes in CKD
  • Using non-calcium based binders saved lives
  • and most importantly: increasing the dose of dialysis in AKI improved survival

The last point was an area that was emphasized in my education. I heard Dr. Murray spend so much time going over the preliminary evidence that I was honed to proselytize the gospel of early and often dialysis for acute kidney injury. I loved working with Murray, he’s a great speaker, a great teacher and the only man with more board certifications than years in middle school (internal medicine, nephrology, critical care, clinical pharmacology).

Since finishing fellowship it has been humbling watching each of these truths fall to the blade of the RCT (though I still believe that calcium based binders are harmful).

The results of the ATN Trial this past summer has been especially heartfelt because I was so invested in the outcome. I had argued and fought so many times to get an access and initiate dialysis, to get an extra-treatment, all this time being smugly self confident that I was helping the patient. Confident that I was fighting the good fight. Ughh.

So here it is, a review of the article that kicked me in the chest…
The objective was to determine if more intensive dialysis for acute kidney injury would improve survival in critically ill people. Unique to this trial, the protocol allowed patients to get either conventional hemodialysis or hemofiltration depending on the hemodynamic status of the patient at any time during the trial. This innovation allows the trial to better track actual practice. Additionally, it allows the trial to get past the eternal debate of which modality is better, and answer the question of what dose to target regardless of the modality.

The study was conducted from 2003 to 2007.

The trial was run at 27 institutions.

Enrollment criteria:

  • Critically ill adult
  • Age: 18 or older
  • Renal failure plus at least one other organ system failure or sepsis

Patients who were hemodynamically stable were provided hemodialysis (prescribed Kt/V 1.2-1.4). If they were unstable, CVVH or SLED was provided. The decision between CVVH and SLED was determined by individual site preference.

Patients were randomized to one of two dosing schemes:

Less-intensive strategy:

  • Stable: Intermittent hemodialysis: 3 days a week effluent
  • Unstable: Continuous therapy: effluent of 20 mL/kg/hr

Intensive strategy:

  • Stable: Intermittent hemodialysis: 6 days a week effluent
  • Unstable: Continuous therapy: effluent of 35 mL/kg/hr

These definitions for dose come from Ronco’s paper (continuous therapy) and Schiffl’s paper (intermittent therapy) two studies which are (were?) frequently invoked as support for high dose dialysis in acute kidney injury.

Dialysis was continued until recovery of renal function, discharge from the ICU or 28-days of therapy or death. Recovery of renal function was defined by 6-hour CrCl of >12 mL/min and investigator discretion or >20 mL/min.

Primary Endpoint: All-cause mortality at day 60.

Secondary endpoints:

  • In-hospital death
  • Recovery of renal function (CrCl>20). Recovery was defined as complete if Cr was <0.5>0.5 over the baseline creatinine.
  • Duration of renal replacement therapy
  • Dialysis free at 60 days
  • Duration of ICU stay
  • Return to previous home at day 60.

Power analysis

  • Estimated mortality with less-intensive strategy 55%
  • Estimated mortality with intensive strategy 45%

The authors estimated 10% loss to follow-up and all patients lost were assigned to “alive” for analysis. 90% power with a sample size of 1164.

Enrollment was below the power analysis goal of 1164 at 1124 but the study had better retention with 29 being lost for various reasons and 5 being lost and analyzed as “alive.” The power analysis anticipated 112 people being lost.


The all important table 1. shows a cohort that looks similar to the patients I take care of. 60% sepsis and 80% ventilated. Appache 26. All and all, a sick cohort.

The protocol was adhered to extremely well with extra treatments occurring on 0.5% of days in the high dose group and .5% of days with less-intensive strategy. Missed treatments occurred on 1.9% of days in the intensive strategy and 1.1% in less-intensive strategy. Surprisingly, the delivered dose of dialysis with intermittent therapy was a Kt/V of 1.3, right in the middle of the prescribed target. ICU patients are classically difficult to dialyze and previous analysis of delivered dose have shown it to lag well behind prescribed dose.

With continuous therapy the delivered dose like-wise correlated well with prescribed dose: 36.2 mL/kg with intensive strategy and 21.5 mL/kg with less-intensive strategy.

Primary outcome: 53.6% 60-day mortality with less-intensive strategy and 51.5% mortality with intensive strategy (p=0.47).

Secondary outcomes:

  • In-hospital mortality: 48.0% less-intensive strategy, 51.2% intensive strategy
  • Complete recovery of renal function (day 28): 18.4% less-intensive strategy, 15.4% intensive strategy
  • Return to home by day 60: 16.4% less-intensive strategy, 15.7% intensive strategy

Complications: Patients on the intensive strategy required vasopressor support during renal-replacement therapy more often, 14.4% vs 10.0% (p=0.02) and required interventions for hypotension more often, 37.7% vs 30.0% (p=0.006). However, in intermittent dialysis both groups reported similar rates of dialysis associated hypotension 18.5% with intensive vs 18.0% with less-intensive) and similar drops in blood pressure (MAP from 86 to 75 with intensive and from 86 to 74 with less-intensive). The increase in dialysis associated events maybe related to the increased frequency of dialysis (more exposures to dialysis) with intensive strategy.

Hypophosphatemia (17.6% vs 10.9%, p=0.001) and hypokalemia (7.5% vs 4.5%, p=0.03) were both more common with intensive therapy than with less-intensive therapy.

The editorial by Bonventre that was published with the article was okay. I would re-direct interested readers to the Hume, et al. editorial in AJKD which was better.

Some points from the Bonventre article include:

  • Increased numbers of men in the study
  • Lack of CKD patients
  • Questions about the changing of modalities allowed by the protocol
  • Increased amount of SLED in the intensive therapy group compared to the less-intensive strategy

Some choice quotations from the Hume article:

This report currently should be viewed as the definitive study defining dialysis dosing in critically ill patients with AKI.

During the maintenance phase of AKI, while hemodialysis/hemofiltration techniques are being utilized, the patient dies from multi-organ failure while in exquisite electrolyte and fluid balance.

Our group has focused on 2 major areas of evaluation. The first is the recognition that current renal substitution therapy only provides the small-solute clearance function of the kidney but not the metabolic and endocrine functions of the kidney. Similar to the clinical evidence that kidney transplantation markedly prolongs survival and improves health related quality of life compared to dialysis, the replacement of renal parenchymal cell functions in AKI may change the natural history of this disorder.

Kidney stone question


Great question.

I would look at the March 2008 Seminars in Nephrology which is an entire issue devoted to nephrolithiasis.

The issue was guest edited by John Asplin, one of the best teachers I had during my fellowship. We co-authored a chapter on potassium and I tutored medical students for his renal physiology class. He is medical director of Litholink, a independent clinical lab which provides deep clinical information on the metabolic abnormalities found in patients with kidney stones. I use litholink for all of my stone patients and love it.

It also has multiple articles by Fred Coe and Elaine Worcester. Dr. Coe ran a weekly fluid and electrolyte conference that was one of the highlights of my fellowship experience. Every week a fellow would bring a set of electrolytes and Coe would tell you all about the patient simply from the numbers. It was uncanny how good he was.

My favorite quote from Dr. Coe was:

What you do is serious nephrology [he was referring to acute and chronic renal failure]. What I do is just civilian nephrology. [referring to nephrolithiasis]

Elaine and I co-authored a chapter on calcium, magnesium and phosphorous. We had a great collegial relationship during my fellowship and only after I graduated did I realize how large she was in the field of nephrolithiasis.

Craig Langman also wrote one of the articles in this issue of Seminars in Nephrology. He is a pediatric nephrologist and I spent a couple of months with him at Children’s Memorial during my second year of fellowship. He’s a great teacher. He is now on the lecture circuit for Genzyme. If he comes to town, go. He’s one of the great teachers in nephrology.

Update: Dr. Langman sent me a note stating that he is not “on the circuit.” But my advice stands, if he comes to town, don’t miss him.