Lecture on CKD-MBD

The St John Nephrology Fellowship is excellent. One of the reasons it is good is  we continually use feedback to fix holes. In last year’s in-service exam we found some weakness in calcium so I was asked to buff the fellows calcium knowledge.

Today I started that with a lesson on CKD-MBD where we focused on the KDIGO 2017 update. I pulled what I feel are the the most important articles in this area published recently. Here is what I pulled:

PRIMO. Paricalcitol in pre-dialysis CKD does not magically heal the heart.
Phosphate binder network meta analysis. Concluded that calcium-free based binders are better. All binders have lots of side effects.
The guideline
Executive summary of the guideline with a useful side-by-side comparison of the 2009 and 2017 guidelines.
Phosphorus binders in pre-CKD patients don’t do a lot of good and increase coronary calcification.
Evolve. Prospective data in CKD MBD that produced a nice separation in PTH and not much else.
FGF-23 still has not made it into the guidelines but it is the phantom menace soon to be unveiled.

What did articles did I miss? What are your favorite CKD-MBD articles

P.S. My favorite part of the guidelines, the part that tell you everything you need to know about KDIGO is 4.2.2:

Here it is in 2009:

And here it is in 2017

And the best part is how the level of evidence has not changed. 2C for both. It’s like they just woke one morning on a different side of the bed.

Great update from Swapnil

I will be doing Show and Tell on Social Media and Medicine Jan 31 at the University of Michigan

The University of Michigan invited me to speak on social media to the division of nephrology on January 31st. They asked me how I wanted to handle it and I told them that I would love to get an opportunity to show them rather than just tell them about  social media and they responded “How about both?”

Show: At 3pm I will guide the fellows and anyone else who shows up through the European NephJC Twitter journal club chat. We will be talking about metformin in advanced CKD.

Tell: Then after NephJC, I will roll into a traditional lecture on The History and Future of Medical Education.

Please join me in University Hospital 2nd floor, room 2C-224 UH at 3pm (for NephJC)or 4pm (for a lecture). I have been told the room can hold up to 80 people. It would be fun if we could fill it.

High-altitude renal syndrome

Everyone knows the famous George Mallory answer to the question about why he was climbing Mount Everest , “because it’s there.” But I just learned that he continued after that mic drop and spoke about doing science on these mountain climbing missions:

Sometimes science is the excuse for exploration. I think it is rarely the reason.

The three primary causes of high altitude sickness:

  1. Acute mountain sickness (AMS): headache, gastrointestinal symptoms (anorexia, nausea, vomiting), sleep disturbances, dizziness, fatigue
  2. High altitude pulmonary edema (HAPE)
  3. High altitude cerebral edema (HACE)

Lake Louise Acute Mountain Sickness severity score for acute mountain score:

Preventing AMS is usually dependent on limiting altitude gain, avoiding alcohol and drinking a lot of water.  Acetazolamide 125-250 bid is also effective.

The headache of acute mountain sickness can be decreased or avoided with medications:

Aspirin 320 mg po q4-hours x 3 doses, starting 1 to 2 hours prior to arrival

Ibuprofen 600 mg po q8-hours for at least 3 doses, starting 6 to 24 hours before ascent.

Ginko Biloba has been used with variable success as prophylaxis. 160-240 mg in divided doses

Dexamethasone 8 mg daily in divided doses can also be used for prophylaxis.

Nice review of AMS treatments and prophylaxis can be found here.

In studies looking at the etiology of AMS and HAPE, Vascular Endothelial Growth Factor and its soluble receptor sFlt-1 were thought to play a role. However in a study of 51 Denali mountaineers, blood levels were not associated with AMS.

The body has a number of strategies to adapt to high altitude trekking. Among the changes is the observation that the density of capillaries per unit of muscle rises. This sounds cool until you read that some scientists believe this is primarly due to a loss of muscle mass rather than growth in new capillaries.

Other strategies for adaptation include

  • Hyperpnea and tachypnea leading to hypocapnia
  • Hypoxia may trigger several receptors, including airway chemoreceptors
  • Tissue hypoxia also induces the production of hypoxia-inducible factor (HIF) transcription factors
  • Changes in metabolic pathways including oxidative metabolism, cell cycle and diminished myogenesis
  • Changes in hemoglobin oxygen affinity that alter arterial oxygen saturation and release to tissues
  • Increase in mitochondria and cytochrome oxidase occur but only after 7-9 days at altitude

Renal changes.

High-altitude renal syndrome is an asymptomatic chronic condition of high-altitude dwellers defined as:

  • High-altitude polycythemia
  • Systemic hypertension
  • Microalbuminuria
  • Hyperuricemia
  • Relatively preserved glomerular filtration rate

High altitude renal syndrome is part of the complex adaptive response to altitude.

Creatinine based GFR is unaffected by increases in altitude, however a study that used cystatin c based GFR assessment found a 3ml/min drop in GFR for every 1,000 meters the mountaineers ascended.

Interestingly, AMS was associated with higher eGFR.

Most electrolytes fall:

The decrease in serum bicarbonate comes from hypoxia induced respiratory alkalosis. Arterial pH at the top of Everest is estimated to be 7.7 to 7.8. PaO2 was 35 mmHg!

Trekkers in the mountains have hypovolemia due to increased insensible losses, increased anorexia, and decreased thirst. Additionally there is altitude induced diuresis. This diuresis seems to be an obligatory early phase of adaptation to altitude. The diuresis can cause a 1-3 liter loss of body water resulting in a 38% increase in blood viscosity at 5,800 meters.

The diuresis has variably been explained by suppression of ADH, increases in ANP and increases in BNP. Increases in BNP are associated with increased risk of AMS.

This paragraph is very interesting:

It remains unknown whether the altitude-induced decrease in plasma volume is adaptive or potentially harmful. If adaptive, then less effort should be made to correct ‘dehydration’, and fluid intake should be limited to simply following the thirst mechanism and to offsetting insensible losses (admittedly difficult to estimate, much less measure, on the mountain). Indeed, as discussed above, fluid retention rather than dehydration is associated with AMS. Perhaps diminished plasma volume is part of the body’s effort to supply oxygen to the most vital organs, overriding the not insubstantial risks of hyperviscosity and thrombosis associated with hemoconcentration.
There could be two beneficial effects of high-altitude diuresis:
  1. Early hemoconcentration elevates the blood concentration of hemoglobin prior to the slower onset of EPO-stimulated erythropoiesis
  2. Volume depletion reduces intravascular pressure and volume load on the lungs and brain, and may decrease renal oxygen consumption (90% of which reflects renal sodium reabsorption) due to diminished filtration

This article is excellent.

Hypercalcemia from 1,25 vitamin D toxicity

I received an outpatient consult for acute kidney injury. One of the things that makes Saint Clair Nephrology a remarkable nephrology group is our ability to get patients in quickly. While competing practices in the area have a 3-month wait list to see new patients we get patients in within a week. This patient was seen two days after his doctor called.

The patient was frightened. He had previously been healthy and his doctor told him his kidneys were failing and that he needed to see a nephrologist. He arrived with a creatinine in the high 2s from a base line of 1.2 mg/dL. Along with the AKI his blood pressure was touching 180 systolic, out of character for him. Of note on the initial labs his calcium was 13.6 mg/dL.

The initial work-up showed suppressed PTH. SPEP and UPEP were normal.

On the next visit I checked the 1,25 vitamin D and it was 117 IU. I suspected lymphoma or sarcoidosis but the chest x-ray was unremarkable and the patient did not have any palpable lymph nodes or abnormalities on the CBC. No weight loss, night sweats, or fevers. ACE levels were unremarkable.

On further questioning on his third visit, the patient mentioned he was taking a generic knock off of Mega Red Fish Oil. Fish oils can have significant amounts of vitamin D and the supplement is famously lax with quality control. He stopped the fish oil, we started him on oral prednisone and the 1,25 vitamin D level quickly responded within a couple of weeks. The patient had a full recovery from the hypercalcemia, hypertension, and acute kidney injury.

 

 

Update

Some great comments from Twitter

 

 

#NephMadness Editorial in AJKD

Matt and I wrote an editorial on NephMadness. Last year was the fifth year of NephMadness and Matt and I felt it was time to pass the reigns to some new blood. Tim Yau came on board last year and got a lot of experience. Anna Burgner was added to the executive team this year. They are doing a cracking job.

As Matt and I move to lesser roles, Feldman, Dember, and Sterns invited us to review our experience with the first five years of NephMadness. It was very kind of them. The editorial is out now. Take a look.

My favorite part of this is that when you type NephMadness into PubMed, you will get two hits. (As of writing this, the new article is not indexed. Awkward.)

Cardiorenal conference in New York: #NephCards2018

You probably know Kenar Jhaveri. He is the founder of NephronPower and the first editor of AJKDblog. He is a professor of Medicine at Hofstra Northwell School of Medicine on Long Island. Kenar is a good friend and one of the great nephrology educators.

He is sponsoring a cardiorenal symposium in March. I’d love to go but I’ll be most of the way to Everest Basecamp at that time. If you have some spare conference time, you should check out The Heart-Kidney Connection.

There will be mad tweeting so in mid-March tune your Twitter machine to #nephcards2018

The Everest Itinerary

I am so excited to go to the Top of the World with MM4MM to help raise money and awareness for the multiple Myeloma Research Foundation. If you haven’t already, please take a look at my fundraising page.

The trip is being guided by Embark. They seem quite professional.

Here is the itinerary. From what I understand this is just provisional as all plans in the mountains must be.

 

Day 1. We meet in Kathmandu (4, 593 feet).

Day 2. We fly from Kathmandu to the world’s most dangerous airport in Lukla (9,383 feet).

Day 2. After landing in Lukla we hike to Phakding (8,563 feet).

Day 3. From Phakding we trek to Namche bazaar at 11,290 feet. Namche is in a bowl in the hill side, it is a commerce center. Will arrive in the afternoon and may need to climb up to our hotel.

Day 4. We have a rest day in Namche to help with acclimitization. We won’t go any higher to sleep but we will do day hikes. We should have the opportunity to go to Kumchong to see a Hillary School.

Day 5. The next day we will go to Tenboche (12,687 feet). This hike starts by going down and then up. We will be going to the Tanboche monastery, one of the largest in the area. Namche the crowd thins out and the villages are farther apart.

Day 6. The next day is at the Pheriche (14,340). We should get a view of Everest from here.

Day 7. Above Pheriche we encounter the glacier and go to Lobuche, 16,700 feet. We will be walking on the terminal moraine of the glacier.

Day 8. Biggest day is from Lobuche to Gorakshep. We will dump our gear and then climb up to the Everests Basecamp (17,598 feet). We will head back to Gorakshep to sleep (16,942 feet).

Day 9. The next morning we will get up early and head to the summit of Kalapathhar, the highest point of the trip (18,514 feet) and what should have a spectacular view of the glacier and Everest.

Day 10. We then go all the way to Pheriche (14,340 feet)  that night. Long day.

Day 11. The next day we go from from Pheriche to Namche where we will catch a helicopter to take us to Kathmandu.

List of therapies that reduce cardiovascular mortality in diabetes

I’m giving grand rounds on Tuesday on SGLT2 inhibitors and I’m trying to come up with a list of therapies that lower CV death in diabetes.

Here is my list:

  • Blood pressure control
    • UKPDS
    • ADVANCE All-cause mortality was reduced with a near miss on CV mortality (P=0.041)
  • Empagliflozen
  • Canagliflozin
    • CANVAS Only partial credit here. CV death was part of the composite outcome, but CVD was not significant on its own
  • Semaglutide
    • SUSTAIN-6 Weak. Hit the primary outcome but CV death was explicitly identical between groups
  • Liraglutide

Drugs that have run the FDA CV disease gauntlet and that are non-inferior to standard of care:

  • Exanatide
  • Rosiglitazone
  • Pioglitazone
  • Alogliptin
    • EXAMINE (This is a secondary prevention trial. As far as I can tell it is the only FDA mandated outcome trial that is specifically designed as a secondary prevention. Not sure why.)
  • Saxagliptin
  • Degludec

 

I’m sure I’m missing some. There must be a statin trial of diabetics. Right?

 

Swapnil was first with the statin answer:

And Edgar came up with a great visual from a review paper:

And Szymon came up with the Steno trial. I can’t believe I forgot about that one.

 

Mistakes in medical education social media

I am in page proof hell.

The two year slog from from gleefully saying “Wow, that sounds like fun” to a published book is wrapping up. I am working with Edgar Lerma and Matt Sparks on Nephrology Secrets fourth edition. It is an amazing amount of work.

Yesterday I was proofing a chapter and found a pretty profound error.

Not a typo.

Not a misspelling.

Not an awkward turn of phrase.

This was a hardcore, error-of-fact that would have confused readers that didn’t know better and cause significant loss of authority for the book by the readers that did.

This error had travelled a long and perilous editing river to finally arrive intact at the final page proof.

I don’t know how the authors proofed their own chapter, but I assume it went through multiple drafts and rewrites. Then the chapter was sent to the editors and for Secrets, each editor read and commented on each chapter. After each editor the chapter was sent back to the authors for revision. This rinse, wash, and repeat went through three cycles. One with each editor. Then the text was turned over to Elsevier and they converted it into a book. The publisher returned proofs to the authors with specific questions that came up during the page layout. Another independent set of eyes. And then the authors signed off on the proofs.

And after all of that I found the error. A significant error.

This error came within one-step of being a permanent, written-in-ink error in the book. That chain of revisions and proofs is what makes books as good as they are. What type of checks are there in social media delivered medical education? How do we assure that the lectures and pearls we push through our blogs and tweets do not contain subtle (or not so subtle) errors. Very little social media has anywhere close to the editorial infrastructure that an Elsevier textbook enjoys.

In my post about Kidney Week I received three different DMs and @s notifying me of 3 different typos and misspelling. Fix and move on.

Typos are easy. There is more embarrassment than ego in those mistakes. Mistakes of content are harder to accept. The instinct is to defend our work, push back against the unsolicited peer reviewer. But we need to keep our ears to the crowd and our minds open so that…

If we are wrong

It is not for long.

Because the strength of social media is using Linus’s Law to uncover mistakes and then it is up to us to put away our egos and make it right.

given enough eyeballs, all bugs are shallow

I really feel the success of FOAMed depends on the crowd notifying authors of mistakes and then the authors fixing those mistakes. A failure on either side of that equation (either side means that if you are reading FOAMed and see a mistake you have an obligation to point it out. Noticing a mistake in medical education material and moving on without notifying the author is like seeing a discarded pistol by the playground and not telling the authorities. That dead seven-year-old is on you) and FOAMed becomes a joke as it morphs into a minefield of crappy, error filled resources.